Mark Scheme

June 2016 Results

Pearson LCCI (ASE20098) Level 3 Management Accounting

LCCI Qualifications

LCCI qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.lcci.org.uk.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

All the material in this publication is copyright
Publication code: 49731_ms
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Mark
$\mathbf{1 (b)}$	Award 1 mark for explanation and 1 mark for development.	
To allow costs to be predicted for the actual level of activity that occurs (1) This will give a meaningful comparison of actual costs with (flexed) budgets(1)	(2)	

Question number		Mark
$\mathbf{1 (c)}$	Award up to 2 marks for definition. Award 1 mark for identification of example. Award 1 mark for development. The principal budget factor is the factor that determines or limits (1) the budget or activity level of all other factors (1). The supply or demand of a factor determines if it is the principal budget factor (1). If a company is limited to producing 1,000 units a month because of the available labour force(1) that will be the principal budget factor limiting all the other factors, e.g. sales levels and material requirement (1)	$\mathbf{4}$

Question number	Answer	Mark
2(a)(i)	Award 1 mark for all entries, correct, on debit side. Award 1 mark for all entries, correct, on credit side. Award 1 mark for correct calculation of WIP on credit side.	(3)

Question number	Answer	Mark
2(a)(ii)	Award 1 mark for all entries, correct on debit side. Award 1 mark for all entries, correct, on debit side.	(2)

Question number	Answer				Mark
2(a)(iv)	Award 1 mark for entries on debit side (allow OF for Mats control). Award 1 mark for all entries on credit side (excluding FG control). Award 1 mark for of calculation of FG control on credit side.				(3)

Question number	Answer				Mark
2(a)(v)	Award 1 mark for all correct debit entries (allow OF for WIP control). Award 1 mark for all correct credit entries, (excl Prod cost of sales). Award 1 mark for correct Prod cost of sales, on credit side.				(3)

Question number	Answer	Mark
2(a)(vi)	Financial Ledger Control Account	
	$\left.\begin{array}{lclc}\text { Sales } \quad 946,2501 & \text { Balance b/d } & 180,810 \\ & & \text { Raw mats control } & 535,600 \\ & \text { Wages control } & 224,880 \text { of }\end{array}\right\} \mathbf{1}$	
	$\begin{array}{rlrl}\text { Balance } \mathrm{c} / \mathrm{d}(\mathrm{W} 1) \\ 1,158,880 \\ 105,130 & \text { of } & \begin{array}{l}112,990 \\ 1,105,130\end{array}\end{array}$	
	W1 Balance $=$ \$90,700 + W I P 22,215 + FG 48,235 - Prod o/h 2,270 = \$158,880 of W2	
	Sales 946,250 less Production cost of sales 833,260 = Profit \$112	(4)

Question number	Answer	Mark
2(b)	Integrated accounts are a set of accounting records that provide both financial and cost accounts (1) using a common input of data (1)	(2)

Question number	Answer	Mark
2(b)	Non-integrated accounts are a system where the cost accounts are distinct from the financial accounts (1). The two sets of accounts are kept in agreement by the use of controls accounts (1)	(2)

Total for question 2 = 22 marks

Question number	Answer	Mark
3(a)	Workings: 3,000 units of Exe $\times 4$ hours $=12,000 ; 2,500$ units of Whye $\times 5$ hours $=12,500$; and 2,000 units of Zed $\times 3$ hours $=6,000$. This equals $\mathbf{3 0 , 5 0 0}$ (1) direct labour hours Overheads $=\$ 341400 / 30500=\$ 11.19$ per labour hour \quad 1of Workings: Exe $=4$ labour hours $\times \$ 11.19=\$ 44.76$; Whye $=5 \times \$ 11.19=$ $\$ 55.95$; Zed $=3 \times \$ 11.19=\$ 33.57$	

Question number	Answer				Mark
3b					
	$\begin{array}{\|l} \text { Inspection/Set up } \quad \$ 99600 / 600(1)=\$ 166 \text { per production run (1) } \\ \text { Exe }=\$ 166 \times 150=\$ 24900 / 3000 \text { units }=\$ 8.30 \text { per unit } \\ \text { Whye }=\$ 166 \times 200=\$ 33200 / 2500 \text { units }=\$ 13.28 \text { per unit } \\ \text { Zed }=\$ 166 \times 250=\$ 41500 / 2000 \text { units }=\$ 20.75 \text { per unit } \end{array}$				
	Machining $\quad \$ 93100 / 24500(1)=\$ 3.80$ per machine hour (1)				
	Machine hours $=2.5 \times 3000+4 \times 2500+3.5 \times 2000=\mathbf{2 4 , 5 0 0}$ Exe $=2.5 \mathrm{~m} / \mathrm{c}$ hrs $\times \$ 3.80=\$ 9.50$ Whye $=4 \mathrm{~m} / \mathrm{chrs}=\$ 15.20$				
	$\text { Zed }=3.5 \mathrm{~m} / \mathrm{chrs}=\$ 13.30$				
	Packaging $\quad \$ 49500 / 550(1)=\$ 90$ per order (1)				
	Exe $=\$ 90 \times 150=\$ 13500 / 3000$ units $=\$ 4.50$ per unit Whye $=\$ 90 \times 175=\$ 15750 / 2500$ units $=\$ 6.30$ per unit				
	Zed $=\$ 90 \times 225=\$ 20500 / 2000$ units $=\$ 10.12$ per unit				
	Material handling \$99 200/31000(1).		3.20 per kg	used (1)	
	Material quantity: $(3,000 \times 5 \mathrm{~kg}) 15,000+(2,500 \times 4 \mathrm{~kg}) 10,000+(2,000 \times$ 3 kg) $6,000=31,000$				
	Exe $=5 \mathrm{~kg} \times \$ 3.20=\$ 16.00$ Whye $=4 \mathrm{~kg} \times \$ 3.20=\$ 12.80$				
	Prod overhead cost per unit				
		Exe	Whye	Zed	
	Inspection / set- up costs	8.30	13.28	20.75	
	Machinery costs	9.50	15.20	13.301	
	Packaging	4.50	6.30	10.121	
	Material handling	16.00	12.80	9.601	
	Overheads (sub total)	38.30 of	47.58 of	53.77 of	
		Exe	Whye	Zed	
	Direct Materials	60.00	48.00	36.00	
	Direct Labour	56.00	70.00	42.00	
	Overheads	38.30	47.58	53.77	
	TOTAL 1of	154.30 of	165.58	1of 131.	
					(14)

Question number	Answer	Mark
3(c)	Award up to 4 marks for analysis points. Award up to 2 marks for conclusion. Answers may include:	
	Not all costs are able to be related to e.g. labour activity (1) so the use of absorption costing may not be appropriate (1). With ABC costs are allocated on a discreet usage basis. Products that use more of an activity are charged a higher proportion of the overall cost (1) e.g. product Zed has the highest number of orders and should therefore be allocated the greatest proportion of packaging costs. (1)	Products made in smaller batches (i.e. Zed) cause an increase in costs (1) and should therefore be charged more (pro rata) using ABC, than those made in larger batches (1)
Using absorption costing, products Exe and Whye are subsidising product Zed (1). The overheads for Exe, Whye, and Zed are $\$ 44.76$, $\$ 55.95$, and $\$ 33.57$. Using the ABC the overhead costs are $\$ 38.30$, $\$ 47.58$, and $\$ 53.78$. It can be seen that product Zed has now been charged with a more appropriate cost. (1)	Conclusion Activity- based costing builds up a more realistic allocation of costs (1) an advantage of which could be, e.g., that a more accurate selling price can be calculated for specific products (1)	(6)

Total for question 3 = 26 marks

Question number	Answer				Mark
4(a)	Award 1 mark for Cost centre overhead Total overheads Machine hours Direct labour hours	rect overhe ption rates $\begin{gathered} \text { Assembly } \\ 255,000 \\ 15000 \\ \hline \$ 17.001 \end{gathered}$ Per m/chr	absorption r $\begin{aligned} & \text { Finishing } \\ & 292,500 \\ & 15000 \\ & \hline \$ 19.501 \end{aligned}$ per m/c hour	te. Testing 200,000 $\frac{10000}{\$ 20.001}$ per direct labour hour	3

Question number	Answer				Mark
4(b)	Award 1 mark for each correct overhead absorbed. Award 1 mark for each overhead incurred including correct identification. Calculation of over/under absorption:				

Question number	Answer	Mark
$\mathbf{4 (c) (i)}$	Allocation is the charging of a whole item of cost to a cost centre (1)	(1)

Question number	Answer	Mark
$\mathbf{4 (c) (i i)}$	Apportionment is the sharing of overheads between two or more cost centres (1)	(1)

Question number	Answer	Mark
4(c)(iii)	Absorption is a method of charging overheads to a product or service	(1)

Question number	Answer	Mark
$\mathbf{4 (c) (i v)}$	Under absorption is when insufficient overheads are charged to a product or service (1)	(1)

Total for question 4 = 13 marks

Question number	Answer	Mark
$\mathbf{5 (a) (i)}$	Net present value is the conversion of future cash flows into present-day values (1) which shows the discounted value of the investment/project (1)	$\mathbf{(4)}$

Question number	Answer	Mark
$\mathbf{5 (a) (\text { ii) }}$	Internal rate of return estimates the interest rate/cost of capital (1) at which the discounted cash flow is zero (1)	(4)

Question number	Answer				Mark
5(b)(i)	Net present value - 10\%				
	Machine A				
		$\begin{aligned} & \text { Cash flow } \\ & \$ 000 \end{aligned}$	Factor	$\begin{aligned} & \text { Present value } \\ & \$ 000 \end{aligned}$	
		(560)	1.000	(560.00) 1	
		120	0.909	109.08	
	2	260	0.826	214.76	
	3	200	0.751	150.201	
	4	220 *	0.683	150.261	
				64.30	
	$(130+60+30)$		NPV	$=\$ 64,3001$	(4)

Question number	Answer				Mark
5(b)(ii)	Internal rate of return - 15\%				
	Machine A				
	Year	Cash flow	Factor	Present value	
		£000		£000	
	0	(560)	1.000	(560.00)	
	1	120	0.870	104.40	
	2	260	0.756	196.56	
	3	200	0.658	131.60	
	4	220	0.572	125.84 1of	
				(1.60) 1of	
	IRR for Mac	$\text { ine } A=10 \%$	$+\{5 \% \times$	$64.30 \div(64.30+1.60)]\} \mathbf{1}=14.88 \% 1$	
	Award 1 ma	for each	art calcul	ation of the IRR.	(4)

Question Number	Answer	Mark
5(c)	Award up to 4 marks for analysis. Award 2 marks for evaluation. Answers may include: Case for Machine A Machine A has a lower capital cost (1) higher IRR (1) and a shorter payback period (1). Case for Machine B Machine B has a higher net present value (1). We need more information on B to be able to make a valid judgement (1). Conclusion Figures for costs and revenues are only estimates (1) Machine A or B could be selected (1) - if conclusion follows from argument above.	

Total for question 5 = 21 marks
TOTAL FOR PAPER = 100 MARKS

