Mark Scheme April 2018

Results

Pearson LCCI Level 3 Certificate in Cost and Management Accounting
(VRQ) 2015
(ASE20098)

LCCI Qualifications

LCCI qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.lcci.org.uk.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

All the material in this publication is copyright
© Pearson Education Ltd 2018
Publications code: 57473_MS

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Answer (AO1)1 (AO3) 1	Mark
$\mathbf{1 (a) (i)}$	Award 1 AO1 mark for basic point and $\mathbf{1}$ AO3 mark for development. Attainable Standard - is the standard considered to be challenging but achievable under current operating condition (1) which allows for a small amount of wastage, idle time or inefficiency (1).	(2)

Question	Answer (AO1) $\mathbf{1}$ (AO3) $\mathbf{1}$	Mark
$\mathbf{1 (a) (\mathbf { i i) }}$	Award 1 AO1 mark for basic point and 1 AO3 mark for development. Given that this standard is achievable (1) - it may motivate workers to work efficiently / give of their best (1). OR Given that the standard is seen to be fair (1) - both adverse and favourable labour variances are likely to arise (1)	(2)

Question	Answer (AO2) 2	Mark
$\mathbf{1 (b) (i)}$	Material price: $(5.60-\mathbf{6 . 0 0}) \times 43170=\mathbf{\$ 1 7} \mathbf{2 6 8} \mathbf{A d v}$ (1)	
	Actual price $=259020 / 43170 \mathrm{~kg}=\mathbf{\$ 6 . 0 0} / \mathrm{kg} \mathbf{(1)}$	
This must be correctly identified as favourable or adverse to get the final mark.	(2)	

Question	Answer (AO2) 2	Mark
$\mathbf{1 (b) (i i) ~}$	Material usage: (40 984-43 170) $2186 \times 5.60=\mathbf{\$ 1 2 \mathbf { 2 4 1 . 6 0 } \mathbf { A d v } \text { (1) }}$	
	Standard quantity $=(47000 / 25000) \times 21800=\mathbf{4 0} \mathbf{9 8 4} \mathbf{~ k g ~ (1) ~}$	
	This must be correctly identified as favourable or adverse to get the final mark.	(2)

Question	Answer (AO2) 2	Mark
$\mathbf{1 (b) (i i i) ~}$	Labour rate: $(7.20-\mathbf{7 . 1 0}) \times 5 \mathbf{7 2 0}=\mathbf{\$ 5 7 2}$ Fav (1)	
	Actual rate $=40612 / 5720$ hours $=\mathbf{\$ 7 . 1 0} /$ hour (1)	
This must be correctly identified as favourable or adverse to get the final mark.	(2)	

Question	Answer (AO2) 2	Mark
$\mathbf{1 (b) (i v) ~}$	Labour efficiency: (5 450-5720) $270 \times 7.20=\mathbf{\$ 1 9 4 4} \mathbf{A d v}$ (1)	
Standard quantity $=(6250 / 25000) \times 21800=\mathbf{5 4 5 0}$ hours (1)		
This must be correctly identified as favourable or adverse to get the final mark.	(2)	

Question	Answer (AO2) 2	Mark
$\mathbf{1 (b) (v) ~}$	Fixed overhead expenditure: $\mathbf{1 1 0 \mathbf { 0 0 0 } - 1 0 8 3 0 0 = \$ \mathbf { 1 7 0 0 } \mathbf { F a v } \text { (1) }}$ Budgeted Overheads $=25000 \times 4.40=\mathbf{\$ 1 1 0} \mathbf{0 0 0}$ (1) This must be correctly identified as favourable or adverse to get the final mark.	(2)

Question	Answer (AO2) 2	Mark
$\mathbf{1 (b) (v i) ~}$	Fixed overhead volume: $4.40 \times 3200(21800-25000)(\mathbf{1})=\$ \mathbf{1 4} \mathbf{0 8 0} \mathbf{A d v}(\mathbf{1})$ This must be correctly identified as favourable or adverse to get the final mark.	

Question	Answer (AO1) 1	Mark
$\mathbf{1 (C) (\mathbf { i) }}$	Adverse material usage	
	Answers may include: Material used might have been of a lower quality (1of) There may have been more wastage / production problems than expected 1of) Workers may have been less skilled than expected (10f)	(1)

Question	Answer (AO1) 1	Mark
$\mathbf{1 (c) (i i) ~}$	Favourable labour rate	
	Answers may include: Workers may have been of a low quality / skill level (1of) Standard hours may have been set incorrectly at the start of the budget period (1of)	(1)

Question	Answer (AO2) 3	Mark
$\mathbf{2 (a) (i)}$	Variable costs $=\frac{\$ 602270-\$ 558070}{55000-42000 \text { units }}$$=\$ 44200(\mathbf{1})=\$ 3.40 /$ unit (1of) $13000(\mathbf{1})$	(3)
Question Answer (AO2) 2 Mark $\mathbf{2 (a) (i i)}$ High: FC $=602270-187000(55000 \times 3.40)(\mathbf{1 o f)}=\$ 415 \mathbf{2 7 0}$ (1of) OR $558070-142800(42000 \times 3.40)=\$ 415270$ (2)		

Question	Answer (AO2) 2	Mark
$\mathbf{2 (b) (i)}$	Break-even $=\frac{415270(\text { of })=\mathbf{6 3 ~ 4 0 0 ~ u n i t s ~ (1 o f) ~}}{6.55(\mathbf{1 o f})}$	(2)
	$(9.95-3.40($ of $)=6.55$ (of))	

Question	Answer (AO2) 1	Mark
$\mathbf{2 (b) (i i) ~}$	Break-even revenue $=63400$ (of) $\times 9.95=\mathbf{\$ 6 3 0} \mathbf{8 3 0}$ (1of)	(1)

Question	Answer (AO2) 3	Mark
$\mathbf{2 (C)}$	Target Output $=(415270+131000) 546270 / 6.55$ (1of) $=83400$ units (1of)	
	Revenue required $=83400 \times 9.95=\mathbf{\$ 8 2 9} \mathbf{8 3 0}$ (1of)	$\mathbf{(3)}$

Question	Answer (AO2) 1	Mark
$\mathbf{2 (d) (i)}$	Margin of safety (units) $=80000-63400$ (of) $=\mathbf{1 6} \mathbf{6 0 0}$ units (1of)	(1)

Question	Answer (AO2) 2	Mark
$\mathbf{2 (d) (i i)}$	Margin of safety $(\%)=\frac{16600}{80000} \mathbf{(1 o f)} \times 100=\mathbf{2 0 . 7 5 \%}(\mathbf{1 o f})$	

Question	Answer (AO2) 2	Mark
$\mathbf{3 (a)}$	Orders required $(10000 \times 12) / 20000=\mathbf{6}$ orders (1) 6 orders $\times \$ 500=\$ 3 \mathbf{0 0 0}$ (1of)	

Question	Answer (AO2) 2	Mark
$\mathbf{3 (b)}$	Average Inventory $=5000+(20000 / 2)=\mathbf{1 5} \mathbf{0 0 0} \mathbf{~ k g ~ (1)} \times \$ 0.70=\mathbf{\$ 1 0 5 0 0 (1)}$	

Question	Answer (AO2) 6				Mark
3(c)					(6)
	Costs	20000 kg	60000 kg		
	Purchasing	\$840 000 (1)	\$819 000 (1)	$97.5 \% \times 120000 \times £ 7.00$	
	Ordering	\$3 000	\$1000 (1)	$\begin{aligned} & 120000 / 60000=2 \\ & 2 \times £ 500=£ 1000 \end{aligned}$	
	Holding	\$10 500	\$24 500 (1)	$\begin{aligned} & 5000+(60000 / 2)=35000 \\ & 35000 \times £ 0.70=£ 24500 \end{aligned}$	
	Total	$\begin{array}{r} \$ 853500 \\ \text { (1of) } \end{array}$	$\begin{array}{r} \$ 844500 \\ \text { (1of) } \end{array}$	Figure must include purchasing, ordering and holding costs.	

Question	Answer (AO4) 1 (AO5) 1	Mark
$\mathbf{3 (d)}$	The company should increases the size of its orders to 60000 kg (1of) This will save Metis $\$ 9000 /$ reduce inventory costs (1).	

Question	Answer (AO1) 1 (AO2) 3	Mark
3(e)	$\begin{aligned} & \mathrm{EOQ}=\sqrt{ } \frac{2 \times \text { order cost } x \text { annual usage/demand }}{\text { holding cost }}(\mathbf{1}) \\ & \mathrm{EOQ}=\sqrt{ } \frac{2 \times 500 \times 120000}{0.70(\mathbf{1})} \mathbf{(1)}=\mathbf{1 3} \mathbf{0 9 3} \mathbf{~ k g} \text { (1of) } \end{aligned}$	(4)

Question	Answer (AO2) 3		Mark
3(f)(i)	Current average value of inventory 20000 kg orders: $15000 \mathrm{~kg} \times 7.00=\$ \mathbf{1 0 5} 000 \text { (1) }$	60000 kg orders: $\begin{aligned} & 35000(\mathbf{1}) \times 6.825=\$ 238875(\mathbf{1}) \\ & \text { New purchase price }=97.5 \% \times 7.00=\$ \mathbf{6 . 8 2 5} \end{aligned}$	(3)

Question	(AO4) 1	Mark
$\mathbf{3 (f) (i i)}$	The current insurance policy would cover the increased inventory (1of).	$\mathbf{(1)}$

Question	(AO1) 2 (AO3) 2	Mark
3(g)	Award 1 AO1 mark for basic point and 1 AO3 mark for development. Answers might include: - Business would hold enough inventory (1) - this would ensure that it never lost production/sales/customers as a result of running out (1). - Business would hold the right type of inventory (1) - this would help the business to maximize sales/reduce wastage (1). - The business would not hold too much inventory (1) - this would ensure that holding costs are minimized/less money is tied up/less wastage is suffered (1)	(4)

TOTAL FOR QUESTION 3 = 24 MARKS

Question	Answer (AO1) 2	Mark
4(a)	Answers may include: Labour Hours (1) \quad Machine Hours (1) Physical Space (1) Cash (1)	(2)

Question	Answer (AO2) 5					Mark
4(b)		A11	B22	C33		(5)
	Revenue	132500	164000	166800		
	Variable costs	62500	80000	78000	(1)	
	Contribution	70000	84000	88800	(1) for all 3	
	Kg consumed	3500	4800	4800	(1) for all 3	
	Contribution / kg	\$20.00	\$17.50	\$18.50	(10f) for all 3	
	Order of Production	1	3	2	(1) OF for C	

Question	Answer (AO2) 3				Mark
4(c)	Material Left	Product	Output and usage		(3)
	11000	A11	5000 units $\times 0.70=3500 \mathrm{~kg}$	(1)	
	7500	C33	3000 units $\times 1.60=4800 \mathrm{~kg}$	(1)	
	2700	B22	$2700 \mathrm{~kg} / 1.20$ = 2250 units	(1)	

Question	Answer (AO2) 4						Mark
4(d)		A11	B22	C33	Total		(4)
	Units sold	5000	2250	3000			
	Contribution / unit	14.00	21.00	29.60		(1)	
	Total contribution Fixed costs	70000	47250	88800	$\begin{gathered} 206050 \\ (192000) \end{gathered}$	(10f)	
				Profit	14050	(10f)	
	A11: $70000 / 5000=\$ 14.00 /$ unit. B22: $84000 / 4000=\$ 21.00 /$ unit C33: $88800 / 3000=\$ 29.60 /$ unit (1) for all 3						

Question	Answer (A04) 2 (A05) 2	Mark
4(e)	In Favour (TWO marks maximum): - This product-mix ensures that the material is used where it will generate the most contribution / give the most benefit per $\mathrm{kg}(\mathbf{1)}$ - this will ensure that the maximum profit is made (1). - The product-mix ensures that the product making the least contribution is reduced (1) - this will minimize the reduction in profit (1). Against (TWO marks maximum): - This assumes that selling price and costs will not change (1) - any changes may mean that material is not used effectively (1). - The products may be complementary (1) - there will be no point making one product if another is going to be reduced / withdrawn (1). - Customers might only purchase because they can get the whole range of products from one supplier (1) - withdrawing or reducing one product may lose sales of the other products (1). - Himalia may be contracted to supply all three products (1) - withdrawing or reducing one product may lead to legal problems (1). Conclusion: Himalia should / should not adopt the optimal product-mix (1). The conclusion MUST be supported by at least one point in favour or against.	(4)

Question	Answer (AO2 1)	Mark
$\mathbf{5 (a) (i)}$	Standard hours production $=56862 / 20=\mathbf{2 8 4 3 . 1 0}$ hours (1)	(1)

Question	Answer (AO2 2)	Mark
$\mathbf{5 (a) (i i)}$	Production Efficiency $=\frac{2843.10}{2916} \mathbf{(1 o f)} \times 100=\mathbf{9 7 . 5 \%}$ (1of)	(2)

Question	Answer (AO2 3)	Mark
$\mathbf{5 (a) (\text { iii) }}$	Capacity $=\frac{2916}{2700(1) f)} \times 100=\mathbf{1 0 8 . 0 0 \%}$ (1of) Budgeted hours $=15 \times 180=\mathbf{2 ~ 7 0 0 ~ h o u r s ~}$	

Question	Answer (AO2 2)	Mark
$\mathbf{5 (a) (\text { iv) }}$	Volume $=\frac{2843.10}{2700}$ (1of) $\times 100=\mathbf{1 0 5 . 3 0 \%}$ (1of)	

Question	Answer (AO2) 4				Mark
5(b)(i)	Material	$\begin{gathered} \text { Cost \$ } \\ 2600+13720 \\ =16320 \end{gathered}$	$\begin{aligned} & \text { Total Equivalent units } \\ & 2700+(50 \% \times 1000) \\ & =3200(\mathbf{1}) \end{aligned}$	Cost per unit \$5.10	
	Labour \& overheads Total cost	$\begin{aligned} & 4100+7450 \\ & =11550 \end{aligned}$	$\begin{aligned} & 2700+(30 \% \times 1000) \\ & =3000(\mathbf{1}) \end{aligned}$	$\begin{aligned} & \$ 3.85 \\ & \$ 8.95 \end{aligned}$	
	Value of Goods sent to customer = $\mathbf{2 7 0 0 \times 8 . 9 5 = \$ 2 4 1 6 5 (1 0 f)}$				(4)

Question	Answer (AO2) 3				Mark
5(b)(ii)	Value of closing work-in-progress:				
	Material	500 equivalent units $\times 5.10$ (of) $=$	\$2550	(1of)	
	Labour \& overheads	300 equivalent units $\times 3.85$ (of) $=$	\$1 155	(1of)	
	Total cost		\$3 705	(1of)	(3)

Question	Answer (AO4) 4 (AO5) 1	Mark
5(c)	Answers may include: Accurate and up-to-date: - The business has the newest accounting packages - this should increase the speed and accuracy of information (1). Not accurate and up-to-date: - Data has to be copied across to the general ledger - this is timeconsuming and increases the chances of errors (1). - Employees work independently on their own work - there is therefore no verification (1) which means that inaccurate data may be copied onto the general ledger (1) - Many of the computers are standalone which means that there may be several versions of the same information on different machines / it may not be the latest information being transferred to the general ledger (1). - The system is not integrated - so there are no inbuilt checks that would warn of potential errors in data being input (1). It is expected that candidates may produce stronger arguments against the system producing accurate and up-to-date information. 1 mark awarded for a conclusion that reflects the balance of the arguments.	(5)

TOTAL FOR QUESTION 5 = 20 MARKS
TOTAL FOR PAPER = 100 MARKS

